Parallel Spectral Division via the Generalized Matrix Sign Function

نویسنده

  • STEVEN HUSS-LEDERMAN
چکیده

In this paper we demonstrate the parallelism of the spectral division via the matrix sign function for the generalized nonsymmetric eigenproblem. We employ the so-called generalized Newton iterative scheme in order to compute the sign function of a matrix pair. A recent study has allowed considerable reduction (by 75%) in the computational cost of this iteration, making this approach competitive when compared to the traditional QZ algorithm. The matrix sign function is thus revealed as an eecient and reliable spectral division method for applications that only require partial information of the eigenspectrum. For applications which require complete information of the eigendis-tribution, the matrix sign function can be used as an initial divide-and-conquer method, combined with the QZ algorithm for the last stages. The experimental results on an IBM SP2 multicomputer demonstrate the parallel performance (eeciency around 60{80%) and scalability of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIGNED GENERALIZED PETERSEN GRAPH AND ITS CHARACTERISTIC POLYNOMIAL

Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.

متن کامل

Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I

The dense nonsymmetric eigenproblem is one of the hardest linear algebra problems to solve e ectively on massively parallel machines. Rather than trying to design a \black box" eigenroutine in the spirit of EISPACK or LAPACK, we propose building a toolbox for this problem. The tools are meant to be used in di erent combinations on di erent problems and architectures. In this paper, we will desc...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Inverse Free Parallel Spectral Divide and Conquer Algorithms for Nonsymmetric Eigenproblems

We discuss two inverse free, highly parallel, spectral divide and conquer algorithms: one for computing an invariant subspace of a nonsymmetric matrix and another one for computing left and right de ating subspaces of a regular matrix pencil A B. These two closely related algorithms are based on earlier ones of Bulgakov, Godunov and Malyshev, but improve on them in several ways. These algorithm...

متن کامل

Computing Fundamental Matrix Decompositions Accurately via the Matrix Sign Function in Two Iterations: The Power of Zolotarev's Functions

The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental matrix decompositions with many applications. Conventional algorithms for computing these decompositions are suboptimal in view of recent trends in computer architectures, which require minimizing communication together with arithmetic costs. Spectral divideand-conquer algorithms, which recursively...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007